
2024/04/27 08:30 1/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

Peanut Job Submission Cluster

Think of these machines as a dumping ground for discrete computing tasks that might be rude or
disruptive to execute on the main (shared) shell servers (i.e., linux1, linux2, linux3).

For job submission we will be using a piece of software called Slurm. Simply put, Slurm is a queue
management system; it was developed at the Lawrence Livermore National Lab. It currently supports
some of the largest compute clusters in the world. The best description of Slurm can be found on its
homepage:

"Slurm is an open-source workload manager designed for Linux clusters of all sizes. It provides three
key functions. First it allocates exclusive and/or non-exclusive access to resources (computer nodes)
to users for some duration of time so they can perform work. Second, it provides a framework for
starting, executing, and monitoring work (typically a parallel job) on a set of allocated nodes. Finally,
it arbitrates contention for resources by managing a queue of pending work."1)

Slurm is similar to most other queue systems in that you write a batch script, then submit it to the
queue manager. The queue manager schedules your job to run on the queue (or partition in Slurm
parlance) that you designate. Below is an outline of how to submit jobs to Slurm, how Slurm decides
when to schedule your job, and how to monitor progress.

Where to begin

Slurm is a set of command line utilities that can be accessed via the command line from most any
computer science system you can login to. Using our main shell servers (linux.cs.uchicago.edu) is
expected to be our most common use case, so you should start there.

ssh user@linux.cs.uchicago.edu

Mailing List

If you are going to be a user of this cluster please sign up for the mailing list. Downtime and other
relevant information will be announced here.

Mailing List

Documentation

The Slurm website should be your primary source for documentation.

A great way to get details on Slurm commands are the manuals that are already on the cluster. For
example, if you type the following command:

man sbatch

http://slurm.schedmd.com
https://mailman.cs.uchicago.edu/cgi-bin/mailman/listinfo/slurm
http://slurm.schedmd.com/documentation.html

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

you will get the manual page for the sbatch command.

Resources

Common Slurm commands
Official Slurm website
Official Slurm documentation
Slurm tutorial videos
LLNL quick start user guide
Yale's User Guide

Infrastructure

Hardware

Our cluster contains nodes with the following specs:

general:

16 Cores (2x 8core 3.1GHz Processors), 16 threads
64gb RAM
2x 500GB SATA 7200RPM in RAID1

fast:

24 Cores (2x 24core Intel Xeon Silver 4116 CPU @ 2.10GHz), 48 threads
128gb RAM
OS: 2x 240GB Intel SSD in RAID1
/local: 2x 960GB Intel SSD RAID0

pascal

6 Cores (Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz), 12 threads
32gb RAM
OS: 1x 512gb SSD

quadro

16 Cores (Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz), 32 threads
128gb RAM
OS: 2x Samsung SSD 850 PRO 128GB
/local: ZFS mirror (2x Samsung SSD 850 PRO 1TB)
2x Quadro P4000

titan

8 Core (Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz), 16 threads
64gb RAM
OS: 1x 1TB 7200k spinning disk.

https://rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands
http://slurm.schedmd.com/
http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/tutorials.html
https://computing.llnl.gov/linux/slurm/quickstart.html
http://research.computing.yale.edu/support/hpc/user-guide/slurm

2024/04/27 08:30 3/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

4x GeForce GTX 1080 Ti

Storage

There is slow scratch space mounted to /scratch. It is a ZFS pool consisting of 10x 2TB 7200RPM
SAS drives connected via a LSI 9211-8i and is made up of 5 mirrored VDEVs, which is similar to a
RAID10. The servers uplink is 1G ethernet.

Files older than 90 days will be deleted automatically.
Scratch space is shared by all users.

Access

Scratch space is only mounted on nodes associated with the cluster. If you want to be able to transfer
files to the scratch space you will want to run an interactive shell. Now you will be able to use
standard tools such as scp or rsync to transfer files.

You should only do a file transfer via the debug partition: srun -p debug --pty --mem 5001.
/bin/bash
Now you can create a directory of your own: mkdir /scratch/$USER You should store any2.
files you create in this directory.

Example

Request interactive shell

user@csilcomputer:~$ srun --pty --mem 500 /bin/bash

Create a directory on the scratch partition if you don't already have one:

user@slurm1:~$ mkdir -p /scratch/$USER

Change into my scratch directory:

user@slurm1:~$ cd /scratch/$USER/

Get the files I need:

user@slurm1:/scratch/user$ scp user@csilcomputer:~/foo .
foo 100% 103KB 102.7KB/s 00:00

Check that the file now exists:

user@slurm1:/scratch/user$ ls -l foo
-rw------- 1 user user 105121 Dec 29 2015 foo

I can now exit my interactive shell.

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

Performance is slow

This is expected. The maximum speed this server will ever be able to achieve is 1Gb/s because of its
single 1G ethernet uplink. If this cluster gains in popularity we plan on upgrading the network and
storage server.

Utilization Dashboard

Sometimes it is useful to see how much of the cluster is utilized. You can do that via the following
URL: http://peanut.cs.uchicago.edu

Partitions / Queues

To find out what partitions we offer, checkout the sinfo command.

As of December, 2015 we have will have at least 2 partitions in our cluster; 'debug' and 'general'.

Partition Name Description

debug
The partition your job will be submitted to if none is specified. The purpose of this
partition is to make sure your code is running as it should before submitting a long
running job to the general queue.

general
All jobs that have been thoroughly tested can be submitted here. This partition will
have access to more nodes and will process most of the jobs. If you need to use the
--exclusive flag it should be done here.

fast 2019-12-02: 48 threads, 128GB RAM
quadro 2019-12-02: 2x Quadro P4000. *
pascal 2018-05-04: 1x Nvidia GTX1080.
titan 2018-05-04: 4x Nvidia GTX1080Ti. *

* This partition is shared and you MUST use the --gres to specify the resources you wish to use. It is
also encouraged to specify cpu and memory.

Job Submission

Jobs submitted to the cluster are run from the command line. Almost anything that you can run via
the command line on any of our machines in our labs can be run on our job submission server agents.

The job submission servers run Ubuntu 14.04 with the same software as you will find on our lab
computers, but without the X environment.

You can submit jobs from the departmental computers that you have access to. You will not be able to
access the job server agent directly.

http://peanut.cs.uchicago.edu

2024/04/27 08:30 5/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

Command Summary

Cheat Sheet

Slurm Example
Submit a batch serial job sbatch sbatch runscript.sh

Run a script interactively srun
srun –pty -p interact -t 10 –mem 1000
/bin/bash
/bin/hostname

Kill a job scancel scancel 4585
View status of queues squeue squeue -u cnetid
Check current job by id sacct sacct -j 999999

Usage

Below are some common examples. You should consult the documentation of Slurm if you need
further assistance.

Default Quotas

By default we set a job to be run on one CPU and allocate 100MB of RAM. If you require more than
that you should specify what you need. Using the following options will do: --mem-per-cpu, --
nodes, --ntasks.

Exclusive access to a node

You will need to add the --exclusive options to your script or command line options. This option
will ensure that when your job runs it is the only job running on that particular node.

sbatch

The sbatch command is used for submitting jobs to the cluster. sbatch accepts a number of options
either from the command line, or (more typically) from a batch script. An example of a Slurm batch
script is shown below:

Sample script

Make sure you create a directory in which to deposit the STDIN, STDOUT, STDERR files.

 mkdir -p $HOME/slurm/out

#!/bin/bash
#

http://slurm.schedmd.com/pdfs/summary.pdf
http://slurm.schedmd.com/documentation.html

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

#SBATCH --mail-user=cnetid@cs.uchicago.edu
#SBATCH --mail-type=ALL
#SBATCH --output=/home/cnetid/slurm/out/%j.%N.stdout
#SBATCH --error=/home/cnetid/slurm/out/%j.%N.stderr
#SBATCH --workdir=/home/cnetid/slurm
#SBATCH --partition=debug
#SBATCH --job-name=check_hostname_of_node
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=500
#SBATCH --time=15:00

hostname

If any of the above options are unclear as to what they do please check the man page for sbatch

man sbatch

Make sure to replace all instances of the word cnetid with your CNETID.

Submitting job script

Using the above example you will want to place your tested code into a file. 'hostname.job' is the file
name in this example.

sbatch hostname.job

You can then check the status via squeue or see the output in the output directory
'$HOME/slurm/slurm_out'.

srun

Used to submit a job to the cluster that doesn't necessarily need a script.

user@host:~$ srun -n2 hostname
slurm2
slurm2

srun will remain in the foreground until the job has finished.

user@host:~$ srun -n1 sleep 400

squeue

This command will show jobs in the queue.

2024/04/27 08:30 7/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

user@host:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 29 debug sleep user R 0:11 1 research2

scancel

Cancel one of your own jobs. Please read the scancel manual page (man scancel) as there are
many ways of canceling your jobs if they are of any complexity.

scancel 29

sinfo

View information about Slurm nodes and partitions.

The following code block shows the what happens when you run the sinfo command. You get a list
of 'partitions' on which you can run your code. Each partition is comprised of certain types of nodes.
In the case below the default (denoted by a *) is 'debug'. The job time limit is short and is meant only
to debug your code. The other partitions will usually have a particular purpose in mind. 'hardware', for
example, is to be used if you require direct access to the hardware instead of the KVM layer between
the hardware and the OS.

user@host:~$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up 1-00:00:00 1 mix slurm1
fast up 1-00:00:00 6 idle slurm[9-14]
general up 21-00:00:0 6 idle slurm[2-6,8]
pascal up 3-00:00:00 1 idle gpu2
quadro up 3-00:00:00 1 idle gpu1
titan up 3-00:00:00 1 mix gpu3

Monitoring Jobs

squeue and sacct are two different commands that allow you to monitor job activity in Slurm.
squeue is the primary and most accurate monitoring tool since it queries the Slurm controller
directly. sacct gives you similar information for running jobs, and can also report on previously
finished jobs, but because it accesses the Slurm database, there are some circumstances when the
information is not in sync with squeue.

Running squeue without arguments will list all currently running jobs. It is more common, though to
list jobs for a particular user (like yourself) using the -u option…

squeue -u cnetid

or for a particular job id.

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

squeue -j 7894

Interactive Jobs

Though batch submission is the best way to take full advantage of the compute power in the job
submission cluster, foreground, interactive jobs can also be run.

An interactive job differs from a batch job in two important aspects:

The partition to be used is the interact partition1.
Jobs should be initiated with the srun command instead of sbatch.2.

This command:

 srun -p general --pty --cpus-per-task 1 --mem 500 -t 0-06:00 /bin/bash

will start a command line shell (/bin/bash) on the 'general' queue with 500 MB of RAM for 6 hours; 1
core on 1 node is assumed as these parameters (-n 1 -N 1) were left out. When the interactive
session starts, you will notice that you are no longer on a login node, but rather one of the compute
nodes dedicated to this queue. The --pty option allows the session to act like a standard terminal.

Job Scheduling

We use a multifactor method of job scheduling. Job priority is assigned by a combination of fair-share,
partition priority, and length of time a job has been sitting in the queue. The priority of the queue is
the highest factor in the job priority calculation. For certain queues this will cause jobs on lower
priority queues which overlap with that queue to be requeued. The second most important factor is
fair-share score. You can find a description of how Slurm calculates Fair-share here. The third most
important is how long you have been sitting in the queue. The longer your job sits in the queue the
higher its priority grows. If everyone’s priority is equal then FIFO is the scheduling method. If you want
to see what your current priority is just do sprio -j JOBID which will show you the calculation it
does to figure out your job priority. If you do sshare -u USERNAME you can see your current fair-
share and usage.2)

We also have backfill turned on. This allows for jobs which are smaller to sneak in while a larger
higher priority job is waiting for nodes to free up. If your job can run in the amount of time it takes for
the other job to get all the nodes it needs, Slurm will schedule you to run during that period. This
means knowing how long your code will run for is very important and must be declared if
you wish to leverage this feature. Otherwise the scheduler will just assume you will use
the maximum allowed time for the partition when you run.3)

http://slurm.schedmd.com/priority_multifactor.html
http://slurm.schedmd.com/priority_multifactor.html#fairshare

2024/04/27 08:30 9/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

Common Issues
Error What does it mean?
JOB <jobid> CANCELLED AT
<time> DUE TO TIME LIMIT

You did not specify enough time for your job to run. The -t flag
will allow you to set the time limit.

Job <jobid> exceeded <mem>
memory limit, being killed

Your job is attempting to use more memory that you have
requested for it. Either increase the amount of memory you have
requested or reduce the amount of memory usage your application
is trying to use.

JOB <jobid> CANCELLED AT
<time> DUE TO NODE FAILURE

There can be many reasons for this message, but most often it
means that the node your job was set to run on can no longer be
contacted by the the Slurm controller.

error: Unable to allocate
resources: More processors
requested than permitted

It usually has nothing to do with privileges you may or may not
have. Rather, it usually means that you have allocated more
processors than one compute node actually has.

Using the GPU

GRES Multiple GPU's on one system

GRES: Generic Resource. As of 2018-05-04 these only include GPU's.

Jobs will not be allocated any generic resources unless specifically requested at job submit time using
the --gres option supported by the salloc, sbatch and srun commands. The option requires an
argument specifying which generic resources are required and how many resources. The resource
specification is of the form name[:type:count]. The name is the same name as specified by the
GresTypes and Gres configuration parameters. type identifies a specific type of that generic resource
(e.g. a specific model of GPU). count specifies how many resources are required and has a default
value of 1. For example:

sbatch --gres=gpu:titan:2

Jobs will be allocated specific generic resources as needed to satisfy the request. If the job is
suspended, those resources do not become available for use by other jobs.

Job steps can be allocated generic resources from those allocated to the job using the --gres option
with the srun command as described above. By default, a job step will be allocated all of the generic
resources allocated to the job. If desired, the job step may explicitly specify a different generic
resource count than the job. This design choice was based upon a scenario where each job executes
many job steps. If job steps were granted access to all generic resources by default, some job steps
would need to explicitly specify zero generic resource counts, which we considered more confusing.
The job step can be allocated specific generic resources and those resources will not be available to
other job steps. A simple example is shown below.

Ok, but I don't want to read the wall of text above

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

Fine.

The --gres (man srun) is required if you want to make use of a gpu.

 --gpu=gpu:N # where 'N' is the number of GPUs requested.
 # Please try to limit yourself to one GPU per person.

Example when using tensorflow:

Given the file f:

#!/usr/bin/env python3
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

Here we can see that no GPU was allocated to us because we did not specify the --gres option

user@bulldozer:~$ srun -p titan --pty /bin/bash
user@gpu3:~$./f 2>&1 | grep physical_device_desc
user@gpu3:~$

If we request only 1 GPU.

user@bulldozer:~$ srun -p titan --pty --gres=gpu:1 /bin/bash
user@gpu3:~$./f 2>&1 | grep physical_device_desc
physical_device_desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id:
0000:19:00.0, compute capability: 6.1"

If we request 2 GPUs.

user@bulldozer:~$ srun -p titan --pty --gres=gpu:2 /bin/bash
user@gpu3:~$./f 2>&1 | grep physical_device_desc
physical_device_desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id:
0000:19:00.0, compute capability: 6.1"
physical_device_desc: "device: 1, name: GeForce GTX 1080 Ti, pci bus id:
0000:1a:00.0, compute capability: 6.1"

If we request more GPUs then are available.

kauffman3@bulldozer:~$ srun -p titan --pty --gres=gpu:5 /bin/bash
srun: error: Unable to allocate resources: Requested node configuration is
not available

Cool, but how do I know where and what resources are available

Turns out the sinfo command is super useful.

$ sinfo -O partition,nodelist,gres,features,available
PARTITION NODELIST GRES FEATURES

2024/04/27 08:30 11/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

AVAIL
debug* slurm1 (null) (null)
up
fast slurm[9-14] (null) (null)
up
general slurm[2-6,8] (null) (null)
up
pascal gpu2 gpu:gtx1080:1 'pascal,gtx1080'
up
quadro gpu1 gpu:p4000:2 'quadro,p4000'
up
titan gpu3 gpu:gtx1080ti:4
'pascal,gtx1080ti' up

FEATURES: Is actually just an arbitrary string in the configuration file that defines a node. However,
techstaff hopes it actually provides some useful info.

GRES: Don't depend on this being accurate, however it will definitely give you a clue as to how many
generic resources are in a partition.

Checking how many Generic RESources are being consumed

Simple use the -O option for squeue and you can see how many generic resources any particular job
is consuming.

$ squeue -O username,nodelist,gres
USER NODELIST GRES
someusername gpu3 gpu:1
otherusername gpu3 gpu:3
...

Environment Variables

CUDA_HOME, LD_LIBRARY_PATH

Please make sure you specify $CUDA_HOME and if you want to take advantage of CUDNN libraries
you will need to append /usr/local/cuda-x.x/lib64 to the $LD_LIBRARY_PATH environment variable.

cuda_version=9.2
export CUDA_HOME=/usr/local/cuda-${cuda_version}
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64

Currently we support the same versions of CUDA that the latest version of CUDNN supports. This is
not written in stone and we can accommodate most other versions if required; just let techstaff know
what your needs are.

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

PATH

You may also need to add the following to your $PATH

export PATH=$PATH:/usr/local/cuda/bin

CUDA_VISIBLE_DEVICES

Do not set this variable. It will be set for you by Slurm.

The variable name is actually misleading; since it does NOT mean the amount of devices, but rather
the physical device number assigned by the kernel (e.g. /dev/nvidia2).

For example: If you requested multiple gpu's from Slurm (–gres=gpu:2), the CUDA_VISIBLE_DEVICES
variable should contain two numbers(0-3 in this case) separated by a comma (e.g. 1,3).

Example

This sbatch script will get device information from the installed Tesla gpu.

#!/bin/bash
#
#SBATCH --mail-user=cnetid@cs.uchicago.edu
#SBATCH --mail-type=ALL
#SBATCH --output=/home/cnetid/slurm/slurm_out/%j.%N.stdout
#SBATCH --error=/home/cnetid/slurm/slurm_out/%j.%N.stderr
#SBATCH --workdir=/home/cnetid/slurm
#SBATCH --partition=gpu
#SBATCH --job-name=get_tesla_info

export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH=/usr/local/cuda/lib

cat << EOF > /tmp/getinfo.cu
#include <stdio.h>

int main() {
 int nDevices;

 cudaGetDeviceCount(&nDevices);
 for (int i = 0; i < nDevices; i++) {
 cudaDeviceProp prop;
 cudaGetDeviceProperties(&prop, i);
 printf("Device Number: %d\n", i);
 printf(" Device name: %s\n", prop.name);
 printf(" Memory Clock Rate (KHz): %d\n",
 prop.memoryClockRate);

2024/04/27 08:30 13/14 Peanut Job Submission Cluster

How do I? - https://howto.cs.uchicago.edu/

 printf(" Memory Bus Width (bits): %d\n",
 prop.memoryBusWidth);
 printf(" Peak Memory Bandwidth (GB/s): %f\n\n",
 2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6);
 }
}
EOF

/usr/local/cuda/bin/nvcc /tmp/getinfo.cu -o /tmp/a.out
/tmp/a.out
rm /tmp/a.out
rm /tmp/getinfo.cu

Output

STDOUT will look something like this:

cnetid@linux1:~$ cat $HOME/slurm/slurm_out/12567.gpu1.stdout
Device Number: 0
 Device name: Tesla M2090
 Memory Clock Rate (KHz): 1848000
 Memory Bus Width (bits): 384
 Peak Memory Bandwidth (GB/s): 177.408000

STDERR should be blank.

Feedback

If you feel this documentation is lacking in some way please let techstaff know. Email
techstaff@cs.uchicago.edu, call (773-702-1031), or stop by our office (Crerar 357).

More

Sometimes other universities have documentation that is better in some areas.

USC Slurm Docs1.
NESI Slurm Docs2.

1)

http://slurm.schedmd.com/
2) , 3)

https://rc.fas.harvard.edu/resources/running-jobs

mailto:techstaff@cs.uchicago.edu
https://hpcc.usc.edu/support/documentation/slurm/
https://nesi.github.io/hpc_training/lessons/maui-and-mahuika/slurm
http://slurm.schedmd.com/
https://rc.fas.harvard.edu/resources/running-jobs

Last update: 2020/10/07 13:08 techstaff:slurm https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

https://howto.cs.uchicago.edu/ Printed on 2024/04/27 08:30

From:
https://howto.cs.uchicago.edu/ - How do I?

Permanent link:
https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

Last update: 2020/10/07 13:08

https://howto.cs.uchicago.edu/
https://howto.cs.uchicago.edu/techstaff:slurm?rev=1602094137

	Peanut Job Submission Cluster
	Where to begin
	Mailing List
	Documentation
	Resources
	Infrastructure
	Hardware
	Storage
	Access
	Example
	Performance is slow

	Utilization Dashboard
	Partitions / Queues

	Job Submission
	Command Summary
	Usage
	Default Quotas
	Exclusive access to a node
	sbatch
	Sample script
	Submitting job script

	srun
	squeue
	scancel
	sinfo

	Monitoring Jobs
	Interactive Jobs
	Job Scheduling
	Common Issues
	Using the GPU
	GRES Multiple GPU's on one system
	Ok, but I don't want to read the wall of text above
	Cool, but how do I know where and what resources are available
	Checking how many Generic RESources are being consumed

	Environment Variables
	CUDA_HOME, LD_LIBRARY_PATH
	PATH
	CUDA_VISIBLE_DEVICES

	Example
	Output

	Feedback
	More

