2025/12/29 23:45 1/14 Slurm

Slurm

This is the front page for information to our compute resource sharing system. We use software called
Slurm to fairly share compute resources.

For job submission we will be using a piece of software called Slurm. Simply put, Slurm is a queue
management system; it was developed at the Lawrence Livermore National Lab. It currently supports
some of the largest compute clusters in the world. The best description of Slurm can be found on its
homepage:

"Slurm is an open-source workload manager designed for Linux clusters of all sizes. It provides three
key functions. First it allocates exclusive and/or non-exclusive access to resources (computer nodes)
to users for some duration of time so they can perform work. Second, it provides a framework for
starting, executing, and monitoring work (typically a parallel job) on a set of allocated nodes. Finally,
it arbitrates contention for resources by managing a queue of pending work.""”

Slurm is similar to most other queue systems in that you write a batch script, then submit it to the
gueue manager. The queue manager schedules your job to run on the queue (or partition in Slurm
parlance) that you designate. Below is an outline of how to submit jobs to Slurm, how Slurm decides
when to schedule your job, and how to monitor progress.

Communication

Mailing List

If you are going to be a user of any of the CS Slurm clusters please sign up for the mailing list.
Downtime and other relevant information will be announced here.

Mailing List

Discord

There is a dedicated text channel #slurm on the UChicago CS Discord server. Please note that this
Discord server is only for UChicago-affiliated users. You can find a link to our Discord server on the
front page of this wiki.

Clusters

We have a couple different clusters. If you don't know where to start please use the Peanut cluster.
The AI Cluster is for GPU jobs and more advanced users.

e Peanut Cluster
e Al Cluster

How do I? - https://howto.cs.uchicago.edu/

http://slurm.schedmd.com
https://mailman.cs.uchicago.edu/cgi-bin/mailman/listinfo/slurm
https://howto.cs.uchicago.edu/start
https://howto.cs.uchicago.edu/slurm:peanut
https://howto.cs.uchicago.edu/slurm:ai

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

Peanut Cluster

Think of these machines as a dumping ground for discrete computing tasks that might be rude or
disruptive to execute on the main (shared) shell servers (i.e., focal®@, focall, ..., focal7).

Additionally, this cluster is used for courses that require it.

Al Cluster

This cluster is mainly made up of GPU machines and is used primary for research.

To use this cluster there are specific nodes you need to log into. Please visit the dedicated Al cluster
page for more information.

Where to begin

Slurm is a set of command line utilities that can be accessed via the command line from most any
computer science system you can login to. Using our main shell servers (Linux.cs.uchicago.edu)
is expected to be our most common use case, so you should start there.

ssh user@linux.cs.uchicago.edu

If you want to use the Al Cluster you will need to have previously requested access by sending in a
ticket. Afterwards, you may login into:

ssh user@fe.ai.cs.uchicago.edu

Please read up on the specifics on the cluster you are interested in.

Documentation

The Slurm website should be your primary source for documentation.

A great way to get details on Slurm commands are the manuals that are already on the cluster. For
example, if you type the following command:

man sbatch

you will get the manual page for the sbatch command.

Resources

e Common Slurm commands
o Official Slurm website

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

http://slurm.schedmd.com/documentation.html
https://rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands
http://slurm.schedmd.com/

2025/12/29 23:45 3/14 Slurm

e Official Slurm documentation
e Slurm tutorial videos

e LLNL quick start user guide

¢ Yale's User Guide

Job Submission

Jobs submitted to the cluster are run from the command line. Almost anything that you can run via
the command line on any of our machines in our labs can be run on our job submission server agents.

The job submission servers run the same software as you will find on our lab computers, but without
the X environment.

You can submit jobs from the departmental computers that you have access to. You will not be able to
access the job server agent directly.

Command Summary

Cheat Sheet

Slurm |[Example
Submit a batch serial job sbatch |sbatch runscript.sh

srun -pty -p interact -t 10 -mem 1000
Run a script interactively/srun |/bin/bash
/bin/hostname

Kill a job scancel|scancel 4585
View status of queues [squeue squeue -u cnetid
Check current job by id |sacct |sacct-j 999999

Usage

Below are some common examples. You should consult the documentation of Slurm if you need
further assistance.

Default Quotas

By default we set a job to be run on one CPU and allocate 100MB of RAM. If you require more than
that you should specify what you need. Using the following options will do: - -mem-per-cpu, - -
nodes, - -ntasks.

MPI Usage

The Al cluster supports the use of MPI. The following example illustrates its basic use.

How do I? - https://howto.cs.uchicago.edu/

http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/tutorials.html
https://computing.llnl.gov/linux/slurm/quickstart.html
http://research.computing.yale.edu/support/hpc/user-guide/slurm
http://slurm.schedmd.com/pdfs/summary.pdf
http://slurm.schedmd.com/documentation.html

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

amcguire@fe@l:~$ cat mpi-hello.c
#include <mpi.h>

#include <unistd.h>

#include <stdio.h>

int main(int argc, char **argv) {
// Initialize MPI
MPI Init(&argc, &argv);

// Get the number of processes in the global communicator
int count;
MPI Comm size(MPI COMM WORLD, &count);

// Get the rank of the current process
int rank;
MPI Comm_ rank(MPI_COMM WORLD, &rank);

// Get the current hostname
char hostname[1024];
gethostname(hostname, sizeof(hostname));

// Print a hello world message for this rank
printf("Hello from process %d of %d on host %s\n", rank, count,
hostname) ;

// Finalize the MPI environment before exiting
MPI Finalize();

}

amcguire@fe0l:~$ cat hello-job.sh

#!/bin/bash

#SBATCH -J mpi-hello # Job name

#SBATCH -n 2 # Number of processes
#SBATCH -t 0:10:00 # Max wall time
#SBATCH -0 hello-job.out # Output file name

Disable the Infiniband transport for OpenMPI (not present on all clusters)
#export OMPI MCA btl=""openib"

Run the job (assumes the batch script is submitted from the same
directory)
mpirun -np 2 ./mpi-hello

amcguire@fe0l:~$ mpicc -o mpi-hello mpi-hello.c
amcqguire@fe@l:~$ 1s -1 mpi-hello

-rwxrwx--- 1 amcguire amcguire 16992 Jun 30 10:49 mpi-hello
amcguire@fe@l:~$ sbatch -w p001,p002 -p peanut-cpu hello-job.sh
Submitted batch job 1196702

amcqguire@fe0l:~$ cat hello-job.out

Hello from process 0 of 2 on host p00O1

Hello from process 1 of 2 on host p002

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

2025/12/29 23:45 5/14 Slurm

Exclusive access to a node

You will need to add the - -exclusive options to your script or command line options. This option
will ensure that when your job runs it is the only job running on that particular node.

sbatch

The sbatch command is used for submitting jobs to the cluster. sbatch accepts a number of options
either from the command line, or (more typically) from a batch script. An example of a Slurm batch
script is shown below:

Sample script

Make sure you create a directory in which to deposit the STDIN, STDOUT, STDERR files.
mkdir -p $HOME/slurm/out

#!/bin/bash

#

#SBATCH --mail-user=cnetid@cs.uchicago.edu

#SBATCH --mail-type=ALL

#SBATCH --output=/home/cnetid/slurm/out/%j.%N.stdout
#SBATCH --error=/home/cnetid/slurm/out/%j.%N.stderr
#SBATCH --chdir=/home/cnetid/slurm

#SBATCH --partition=debug

#SBATCH --job-name=check hostname of node

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --mem-per-cpu=500

#SBATCH --time=15:00

hostname
If any of the above options are unclear as to what they do please check the man page for sbatch
man sbatch

Make sure to replace all instances of the word cnetid with your CNETID.

Submitting job script

Using the above example you will want to place your tested code into a file. 'hostname.job' is the file
name in this example.

sbatch hostname. job

How do I? - https://howto.cs.uchicago.edu/

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

You can then check the status via squeue or see the output in the output directory
'$HOME/slurm/slurm_out'.

srun

Used to submit a job to the cluster that doesn't necessarily need a script.

user@host:~$ srun -n2 hostname
slurm2
slurm?2

srun will remain in the foreground until the job has finished.

user@host:~$ srun -nl sleep 400

squeue

This command will show jobs in the queue.

user@host:~$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
29 debug sleep user R 0:11 1 research2
scancel

Cancel one of your own jobs. Please read the scancel manual page (man scancel) as there are
many ways of canceling your jobs if they are of any complexity.

scancel 29

sinfo

View information about Slurm nodes and partitions.

The following code block shows the what happens when you run the sinfo command. You get a list
of 'partitions' on which you can run your code. Each partition is comprised of certain types of nodes.
In the case below the default (denoted by a *) is 'debug'. The job time limit is short and is meant only
to debug your code. The other partitions will usually have a particular purpose in mind. 'hardware’, for
example, is to be used if you require direct access to the hardware instead of the KVM layer between
the hardware and the OS.

user@host:~$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up 1-00:00:00 1 mix slurml
fast up 1-00:00:00 6 idle slurm[9-14]

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

2025/12/29 23:45 7/14 Slurm

general up 21-00:00:0 6 idle slurm[2-6,8]
pascal up 3-00:00:00 1 idle gpu2
quadro up 3-00:00:00 1 idle gpul
titan up 3-00:00:00 1 mix gpu3

Monitoring Jobs

squeue and sacct are two different commands that allow you to monitor job activity in Slurm.
squeue is the primary and most accurate monitoring tool since it queries the Slurm controller
directly. sacct gives you similar information for running jobs, and can also report on previously
finished jobs, but because it accesses the Slurm database, there are some circumstances when the
information is not in sync with squeue.

Running squeue without arguments will list all currently running jobs. It is more common, though to
list jobs for a particular user (like yourself) using the -u option...

squeue -u cnetid
or for a particular job id.

squeue -j 7894

Interactive Jobs

Though batch submission is the best way to take full advantage of the compute power in the job
submission cluster, foreground, interactive jobs can also be run.

An interactive job differs from a batch job in two important aspects:

1. The partition to be used is the interact partition
2. Jobs should be initiated with the srun command instead of sbatch.

This command:
srun -p general --pty --cpus-per-task 1 --mem 500 -t 0-06:00 /bin/bash

will start a command line shell (/bin/bash) on the 'general' queue with 500 MB of RAM for 6 hours; 1
core on 1 node is assumed as these parameters (-n 1 -N 1) were left out. When the interactive
session starts, you will notice that you are no longer on a login node, but rather one of the compute
nodes dedicated to this queue. The - -pty option allows the session to act like a standard terminal.

How do I? - https://howto.cs.uchicago.edu/

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

Job Scheduling

We use a multifactor method of job scheduling. Job priority is assigned by a combination of fair-share,
partition priority, and length of time a job has been sitting in the queue. The priority of the queue is
the highest factor in the job priority calculation. For certain queues this will cause jobs on lower
priority queues which overlap with that queue to be requeued. The second most important factor is
fair-share score. You can find a description of how Slurm calculates Fair-share here. The third most
important is how long you have been sitting in the queue. The longer your job sits in the queue the
higher its priority grows. If everyone’s priority is equal then FIFO is the scheduling method. If you want
to see what your current priority is just do sprio -j JOBID which will show you the calculation it
does to figure out your job priority. If you do sshare -u USERNAME you can see your current fair-
share and usage.”

We also have backfill turned on. This allows for jobs which are smaller to sneak in while a larger
higher priority job is waiting for nodes to free up. If your job can run in the amount of time it takes for
the other job to get all the nodes it needs, Slurm will schedule you to run during that period. This
means knowing how long your code will run for is very important and must be declared if
you wish to leverage this feature. Otherwise the scheduler will just assume you will use
the maximum allowed time for the partition when you run.”

Array Jobs

Instead of submitting multiple jobs to repeat the same process for different data (e.g. getting results
for different datasets for a paper) you can use a job arrays.

#SBATCH start-finish[:step][%maximum concurrent]

Examples:

#SBATCH --array 0-15 0, 1, ..., 15

#SBATCH --array 1-3 0, 1, 2, 3

#SBATCH --array 1,3,4,6 1, 3, 4, 6

#SBATCH --array 1-8:2 1, 3, 5, 7

#SBATCH --array 1-10:3%2 1, 5, 9, but the only two of these will ever

run concurrently.
You can differentiate the various tasks using the variable SLURM_ARRAY TASK 1ID.

#!/bin/bash

#

#SBATCH --mail-user=cnetid@cs.uchicago.edu

#SBATCH --mail-type=ALL

#SBATCH --output=/home/cnetid/slurm/out/%j.%N.stdout
#SBATCH --error=/home/cnetid/slurm/out/%j.%N.stderr
#SBATCH --chdir=/home/cnetid/slurm

#SBATCH --partition=debug

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

http://slurm.schedmd.com/priority_multifactor.html
http://slurm.schedmd.com/priority_multifactor.html#fairshare

2025/12/29 23:45 9/14 Slurm

#SBATCH --job-name=check hostname of node
#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --mem-per-cpu=500

#SBATCH --time=15:00

#SBATCH --array 1-4

input=("small dataset" "medium dataset" "large dataset" "huge dataset")
./process $input[$SLURM ARRAY TASK ID]

Additionally, tasks can be used to add job dependencies and other fancy features. For more
information consult the manual

Common Issues

Error What does it mean?
JOB <jobid> CANCELLED AT You did not specify enough time for your job to run. The -t flag
<time> DUE TO TIME LIMIT will allow you to set the time limit.

Your job is attempting to use more memory that you have

Job <jobid> exceeded <mem> |requested for it. Either increase the amount of memory you have
memory limit, being killed requested or reduce the amount of memory usage your application
is trying to use.

There can be many reasons for this message, but most often it
means that the node your job was set to run on can no longer be
contacted by the the Slurm controller.

JOB <jobid> CANCELLED AT
<time> DUE TO NODE FAILURE

error: Unable to allocate It usually has nothing to do with privileges you may or may not
resources: More processors have. Rather, it usually means that you have allocated more
requested than permitted processors than one compute node actually has.

Using the GPU

GRES Multiple GPU's on one system

GRES: Generic Resource. As of 2018-05-04 these only include GPU's.

Jobs will not be allocated any generic resources unless specifically requested at job submit time using
the - -gres option supported by the salloc, sbatch and srun commands. The option requires an
argument specifying which generic resources are required and how many resources. The resource
specification is of the form name[: type: count]. The name is the same name as specified by the
GresTypes and Gres configuration parameters. type identifies a specific type of that generic resource
(e.g. a specific model of GPU). count specifies how many resources are required and has a default
value of 1. For example:

sbatch --gres=gpu:titan:2

Jobs will be allocated specific generic resources as needed to satisfy the request. If the job is

How do I? - https://howto.cs.uchicago.edu/

https://slurm.schedmd.com/job_array.html

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

suspended, those resources do not become available for use by other jobs.

Job steps can be allocated generic resources from those allocated to the job using the - -gres option
with the srun command as described above. By default, a job step will be allocated all of the generic
resources allocated to the job. If desired, the job step may explicitly specify a different generic
resource count than the job. This design choice was based upon a scenario where each job executes
many job steps. If job steps were granted access to all generic resources by default, some job steps
would need to explicitly specify zero generic resource counts, which we considered more confusing.
The job step can be allocated specific generic resources and those resources will not be available to
other job steps. A simple example is shown below.

Ok, but | don't want to read the wall of text above

Fine.

The - -gres (man srun) is required if you want to make use of a gpu.

--gpu=gpu:N # where 'N' is the number of GPUs requested.
Please try to limit yourself to one GPU per person.

Example when using tensorflow:

Given the file f:

#!/usr/bin/env python3
from tensorflow.python.client import device lib
print(device lib.list local devices())

Here we can see that no GPU was allocated to us because we did not specify the - -gres option

user@bulldozer:~$ srun -p titan --pty /bin/bash
user@gpu3:~$./f 2>&1 | grep physical device desc
user@gpu3:~$

If we request only 1 GPU.

user@bulldozer:~$ srun -p titan --pty --gres=gpu:1l /bin/bash
user@gpu3:~$./f 2>8&1 | grep physical device desc

physical device desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id:
0000:19:00.0, compute capability: 6.1"

If we request 2 GPUs.

user@bulldozer:~$ srun -p titan --pty --gres=gpu:2 /bin/bash
user@gpu3:~$./f 2>&1 | grep physical device desc

physical device desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id:
0000:19:00.0, compute capability: 6.1"

physical device desc: "device: 1, name: GeForce GTX 1080 Ti, pci bus id:
0000:1a:00.0, compute capability: 6.1"

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

2025/12/29 23:45 11/14 Slurm

If we request more GPUs then are available.
kauffman3@bulldozer:~$ srun -p titan --pty --gres=gpu:5 /bin/bash

srun: error: Unable to allocate resources: Requested node configuration is
not available

Cool, but how do | know where and what resources are available

Turns out the sinfo command is super useful.

$ sinfo -0 partition,nodelist,gres, features,available

PARTITION NODELIST GRES FEATURES
AVAIL

debug* slurml (null) (null)

up

fast slurm[9-14] (null) (null)

up

general slurm[2-6,8] (null) (null)

up

pascal gpu2 gpu:gtx1080:1 'pascal,gtx1080'
up

quadro gpul gpu:p4000:2 ‘quadro, p4000'
up

titan gpu3 gpu:gtx1080ti:4

'pascal,gtx1080ti' up

FEATURES: Is actually just an arbitrary string in the configuration file that defines a node. However,
techstaff hopes it actually provides some useful info.

GRES: Don't depend on this being accurate, however it will definitely give you a clue as to how many
generic resources are in a partition.

Checking how many Generic RESources are being consumed

Simple use the -0 option for squeue and you can see how many generic resources any particular job
is consuming.

$ squeue -0 username,nodelist,gres

USER NODELIST GRES
someusername gpu3 gpu:l
otherusername gpu3 gpu:3

Environment Variables

How do I? - https://howto.cs.uchicago.edu/

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

CUDA_HOME, LD _LIBRARY_PATH

Please make sure you specify $CUDA HOME and if you want to take advantage of CUDNN libraries
you will need to append /usr/local/cuda-x.x/lib64 to the $LD _LIBRARY_PATH environment variable.

cuda version=11.1
export CUDA HOME=/usr/local/cuda-${cuda version}
export LD LIBRARY PATH=$LD LIBRARY PATH:$CUDA HOME/1ib64

Currently we support the same versions of CUDA that the latest version of CUDNN supports. This is
not written in stone and we can accommodate most other versions if required; just let techstaff know
what your needs are.

PATH

You may also need to add the following to your $PATH

export PATH=$PATH:/usr/local/cuda/bin

CUDA _VISIBLE_DEVICES

Do not set this variable. It will be set for you by Slurm.

The variable name is actually misleading; since it does NOT mean the amount of devices, but rather
the physical device number assigned by the kernel (e.g. /dev/nvidia2).

For example: If you requested multiple gpu's from Slurm (-gres=gpu:2), the CUDA_VISIBLE_DEVICES
variable should contain two numbers(0-3 in this case) separated by a comma (e.g. 0,1).

The numbering is relative and specific to you. For example: two users with one job which require two
gpus each could be assigned non-sequential gpu numbers. However CUDA_VISIBLE_DEVICES will look
like this for both users: 0,1

Example

This sbatch script will get device information from the installed Tesla gpu.

#!/bin/bash

#

#SBATCH --mail-user=cnetid@cs.uchicago.edu

#SBATCH --mail-type=ALL

#SBATCH --output=/home/cnetid/slurm/slurm out/%j.%N.stdout
#SBATCH --error=/home/cnetid/slurm/slurm out/%j.%N.stderr
#SBATCH --workdir=/home/cnetid/slurm

#SBATCH --partition=gpu

#SBATCH --job-name=get tesla info

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

2025/12/29 23:45 13/14 Slurm

export PATH=$PATH:/usr/local/cuda/bin
export LD LIBRARY PATH=$LD LIBRARY PATH=/usr/local/cuda/lib

cat << EOF > /tmp/getinfo.cu
#include <stdio.h>

int main() {
int nDevices;

cudaGetDeviceCount (&nDevices);
for (int i = 0; 1 < nDevices; i++) {
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, 1i);
printf("Device Number: S%d\n", 1i);
printf(" Device name: %s\n", prop.name);
printf(" Memory Clock Rate (KHz): %d\n",
prop.memoryClockRate) ;
printf(" Memory Bus Width (bits): S%d\n",
prop.memoryBusWidth);
printf(" Peak Memory Bandwidth (GB/s): %f\n\n",
2.0*prop.memoryClockRate* (prop.memoryBusWidth/8)/1.0e6);
}

}
EOF

/usr/local/cuda/bin/nvcc /tmp/getinfo.cu -o /tmp/a.out
/tmp/a.out

rm /tmp/a.out

rm /tmp/getinfo.cu

Output

STDOUT will look something like this

cnetid@focal@:~$ cat $HOME/slurm/slurm out/12567.gpul.stdout
Device Number: 0

Device name: Tesla M2090

Memory Clock Rate (KHz): 1848000

Memory Bus Width (bits): 384

Peak Memory Bandwidth (GB/s): 177.408000

STDERR should be blank.

Feedback

If you feel this documentation is lacking in some way please let techstaff know. Email
techstaff@cs.uchicago.edu, call (773-702-1031), or stop by our office (Crerar 357).

How do I? - https://howto.cs.uchicago.edu/

mailto:techstaff@cs.uchicago.edu

Last update: 2025/06/30 17:59 slurm https://howto.cs.uchicago.edu/slurm

More

Sometimes other universities have documentation that is better in some areas.

1. USC Slurm Docs
2. NESI Slurm Docs

1)

http://slurm.schedmd.com/
2) 3)

’

https://rc.fas.harvard.edu/resources/running-jobs

From:
https://howto.cs.uchicago.edu/ - How do I?

Permanent link:
https://howto.cs.uchicago.edu/slurm

Last update: 2025/06/30 17:59

https://howto.cs.uchicago.edu/ Printed on 2025/12/29 23:45

https://hpcc.usc.edu/support/documentation/slurm/
https://nesi.github.io/hpc_training/lessons/maui-and-mahuika/slurm
http://slurm.schedmd.com/
https://rc.fas.harvard.edu/resources/running-jobs
https://howto.cs.uchicago.edu/
https://howto.cs.uchicago.edu/slurm

	Slurm
	Communication
	Mailing List
	Discord

	Clusters
	Peanut Cluster
	AI Cluster

	Where to begin
	Documentation
	Resources

	Job Submission
	Command Summary
	Usage
	Default Quotas
	MPI Usage
	Exclusive access to a node
	sbatch
	Sample script
	Submitting job script

	srun
	squeue
	scancel
	sinfo

	Monitoring Jobs
	Interactive Jobs
	Job Scheduling
	Array Jobs
	Common Issues
	Using the GPU
	GRES Multiple GPU's on one system
	Ok, but I don't want to read the wall of text above
	Cool, but how do I know where and what resources are available
	Checking how many Generic RESources are being consumed

	Environment Variables
	CUDA_HOME, LD_LIBRARY_PATH
	PATH
	CUDA_VISIBLE_DEVICES

	Example
	Output

	Feedback
	More

